Reg. No.:

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CAT	EGOR	Y COMPONENT	COURSE CODE	COURSE TITLE
III	PA	RT - II	CORE-8	P23MA308	DIFFERENTIAL GEOMETRY
Date :	08.11	.2024	/ FN	Time : 3 hours	Maximum: 75 Marks
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.		
CO1	K1	1.	Identify the equatio a) osculating plane c) normal plane	n $[R - r(0), r'(0), r(s) - n$ b) tangen d) secan	r(0)] from the following: nt plane t plane
CO1	K2	2.	The at a point osculating plane at a) normal plane	t P is the line of intersed P. b) principal normal	ction of the normal plane and the c) binormal d) tangent
CO2	K1	3.	Which of the following a) $R = (\rho^2 + \sigma^2)^{\frac{1}{2}}$ c) $R = (\rho^2 + \sigma^2 {\rho'}^2)^{\frac{1}{2}}$	ing is the radius of spheric by $R = (\mu d)$ d) $R = (\mu d)$	erical curvature? $p^{2} + \sigma^{2} \rho')^{\frac{1}{2}}$ $p'^{2} + \sigma^{2} \rho^{2})^{\frac{1}{2}}$
CO2	K2	4.	of C is a curve generators orthogon a) tangent	which lies on the tange nally. b) normal c)	ent surface of C and intersects the involute d) evolute
CO3	K1	5.	For the paraboloid, a) $1 + 4u^2$	$r_1 = (1,0,2u), r_2 = (0,1,-b)$ b) $1 + 4v^2$ c)	F(2v), then $F =d) 1 - 4uv d) 1 - 4uv$
CO3	K2	6.	The two families are a) $ER - 2FQ - GP = 0$ c) $ER + 2FQ - GP = 0$	e orthogonal if and only 0 b) ER + 2 0 d) ER - 2	$r \text{ if}\$ 2FQ + GP = 0 2FQ + GP = 0
CO4	K1	7.	At every point the p a) tangent	principal normal of a geo b) normal	c) parallel d) intersect
CO4	K2	8.	For any curve on a a) $r' = \kappa n$	surface, the curvature τ b) $r' = \tau n$	vector at a point P is. c) $\mathbf{r}'' = \kappa \mathbf{n}$ d) $\mathbf{r}'' = \tau \mathbf{n}$
CO5	K1	9.	The second fundam a) $Ldu + 2Mdudv + Ldu^2 + 2Mdudv + 2M$	nental form is Ndv b) Ldu – Ndv ² d) Ldu ² -	2Mdudv + Ndv - 2Mdudv + Ndv ²
CO5	K2	10.	Gaussian curvature a) $K = \frac{LN-M}{EG-F}$ b	e κ is defined as) $K = \frac{LN - M^2}{EG - F^2}$ c) K	$=\frac{LN+M}{EG+F}$ d) $K = \frac{LN+M^2}{EG+F^2}$
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{OBSECTION} - B} (5 \text{ X } 5 = 25 \text{ Marks})$ Answer <u>ALL</u> Questions choosing either (a) or (b)		
CO1	K2	11a.	Show that $[\dot{r}, \ddot{r}, \ddot{r}] =$ be plane.	0 is a necessary and su	afficient condition that the curve
CO1	K2	11b.	Show that the necessing $\kappa = 0$ for all p	ssary and sufficient cor points of the curve.	ndition for a curve to be a straight

CO2	K2	12a.	Show that the characteristic property of helices is that the ratio of the curvature to the torsion is constant at all points. (OR)	
CO2	K2	12b.	Trace the equation which represent an infinite system of evolutes of the given curve.	
CO3	K3	13a.	Calculate the first fundamental coefficients of the anchor ring. (OR)	
CO3	K3	13b.	On the paraboloid $x^2 - y^2 = z$, find the orthogonal trajectories of the sections by the planes <i>z</i> =constant.	
CO4	K3	14a.	Write down the proof of the curves of the family $\frac{v^3}{u^2}$ =constant are geodesics on the surface with the metric $v^2 du^2 - 2uv du dv + 2u^2 dv^2$ where $u > 0, v > 0$. (OR)	
CO4	K3	14b.	Write down the proof of that if the orthogonal trajectories of the curves $v = constant$ are geodesics, then $\frac{H^2}{E}$ is independent of u.	
CO5	K4	15a.	Prove that if there is a surface of minimum area passing through the closed space curve, it is a minimal surface that is a surface of zero mean curvature (OR)	
CO5	K4	15b.	State and prove Rodrigue's formula.	

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C}{\text{Answer}} = 40 \text{ Marks}$ Answer <u>ALL</u> Questions choosing either (a) or (b)
CO1	K4	16a.	Examine the curvature and torsion of the cubic curve given by $r = (u, u^2, u^3)$.
CO1	K4	16b.	Inspect the curvature and torsion of the curve of intersection of two quadratic surfaces $ax^2 + by^2 + cz^2 = 1$, $a'x^2 + b'y^2 + c'z^2 = 1$.
CO2	K5	17a.	Prove that if the radius of spherical curvature is constant, the curve either lies on a sphere or has constant curvature. (OR)
CO2	К5	17b.	Prove that if C is a spherical helix, then the plane C_1 perpendicular to its axis is an arc of an epicycloid.
CO3	К5	18a.	Deduct the surface of revolution which is isometric with the region of the right helicoid.
CO3	К5	18b.	If (l', m') are the direction coefficient of line which makes an angle $\frac{\pi}{2}$ with the line whose direction coefficients are (l, m) , then prove that $l' = -\frac{1}{H}(Fl + Gm)$ and $m' = \frac{1}{H}(El + Fm)$
CO4	K5	19a.	Prove that on the general surface a necessary and sufficient condition that the curve $v = c$ be a geodesic is $EE_2 + FE_1 - 2EF_1 = 0$ when $v = c$ for all values of v . (OR)
CO4	K5	19b.	State and prove Gauss-Bonnet theorem.
CO5	K6	20a.	Prove that a necessary and sufficient condition for a surface to be developable is that its Gaussian curvature shall be zero. (OR)
CO5	K6	20b.	Prove that a necessary and sufficient condition that a curve on a surface be a line of curvature is that the surface normal along the curve form a developable.